EE 527 MICROFABRICATION

Lecture 25 Tai-Chang Chen University of Washington

ION MILLING SYSTEM

- Kaufmann source
 - Use e-beam to strike plasma
 - A magnetic field applied to increase ion density
- Drawback
 - Low etch rate
 - High ion bombardment damage
 - redeposition

© UWEE TC Chen

REACTIVE ION ETCHING

- Replacing the neutral gas by one or more chemical species
- Chemical etching and physical ion
 bombardment
 - Reactive ions damage wafer surface
 - Dangling bonds = chemical reaction sites
 - Increases etch rate
- Anisotropic
- High selectivity
- Low pressure process

© UWEE TC Chen

RIE - ADVANTAGES AND ISSUES

- Advantages
 - Control of selectivity/anisotropy, etc. by adjusting etch process parameter
 - Minimizes shortcomings of pure sputter and chemical dry etch
- Issues
 - Unbalanced etch process parameters
 - Loading/uniformity effects
 - High ion energies can cause device damage
 - Chemicals/byproducts environmentally toxic
 - Hydrocarbon-based

© UWEE TC Chen

Winter 2014

SILICON – FLUORINE CHEMISTRY

- A fluorine source, such as SF₆ or CF₄ can be cracked by the plasma to produce F[−] radicals.
- The F⁻ radicals will preferentially bind to exposed Si atoms, displacing other atoms sitting on these sites.
- Once 4 F⁻ radicals have saturated the available bonds of a Si atom, the SiF₄ will desorb as a volatile species.
- Bond energies:
 - Si-Si: 52 kcal/mole (energy to break a bond in single crystal Si)
 - F-F: 36.6 kcal/mole (energy to break a bond in F_2)
 - S-F: 68 kcal/mole (energy to break a bond in SF_6)
 - C-F: 116 kcal/mole (energy to break a bond in CF_4)
 - Si-F: 135 kcal/mole (energy supplied by creating a bond in SiF_4)
- F₂ and SF₆ will etch Si with no additional supplied energy.
- CF₄ will etch Si, but requires a little additional energy.

© UWEE TC Chen

SILICON - CHLORINE CHEMISTRY

- Analogous to fluorocarbons, chlorocarbons can be cracked by the plasma, producing Cl⁻ radicals, which can then combine with Si to form SiCl₄, which is volatile and desorbs from the etched surface.
- Bond energies:
 - Si-Si: 52 kcal/mole (energy to break a bond in single crystal Si)
 - CI-CI: 58 kcal/mole (energy to break a bond in Cl₂)
 - C-Cl: 81 kcal/mole (energy to break a bond in CCl_4)
 - Si-Cl: 90 kcal/mole (energy supplied by creating a bond in SiCl₄)
- Chlorine etching always requires additional energy from the plasma, so it is always anisotropic.

WASHINGTON

© UWEE TC Chen

Winter 2014

GAS FEEDSTOCK RULES OF THUMB

- For etching Si:
 - Fluorines are natively isotropic. Adding oxygen makes them increasingly anisotropic.
 - Chlorines are natively anisotropic.
- Oxygen will ash most organic films, such as photoresist residue, producing CO₂ and H₂O. Don't add oxygen if a fluorocarbon sidewall passivation is desired, as the O₂ will remove it.
- Hydrogen will create HF with a fluorine chemistry and produce etching of SiO₂, often preferentially to that of Si. This can be useful for sidewall passivation to achieve higher anisotropy, and for achieving greater SiO₂/Si etch selectivity.
- Argon will not affect the chemistry, but can be added when additional ion bombardment is needed. This makes most etches more anisotropic, but dilutes the reacting species.

© UWEE TC Chen

Trenching of substrate occurs adjacent to resist edges.

7	JN	VE	RS	ΙТ	Y	0	F
N N	WA	SE	IIN	IG	T(DN	I

© UWEE TC Chen

Winter 2014

PLASMA ETCHING EFFECTS - REDEPOSITION

Redeposition of sputtered resist occurs adjacent to resist edges.

© UWEE TC Chen

SIDEWALL POLYMERIZATION - 1

- Most RIE processes exhibit some degree of sidewall passivation.
- Sidewalls receive less ion bombardment which can allow passivation reactions to dominate over etching.
- The bottom of a trench receives maximum ion bombardment which prevents the passivation layer from building up.
- <u>Example: SF_6 / O_2 </u>: SF_6 is normally almost isotropic, but dilution with O_2 allows SiO_2 to form on sidewalls which passivates further sidewall etching. More O_2 makes the etch increasingly anisotropic.
- <u>Example: CF₄ / H₂</u>: Fluorocarbons can etch or polymerize depending upon the F/C ratio: F/C > 3 gives etching, F/C < 2 gives polymerization. Adding H₂ forms HF which can etch oxides, giving Si/SiO₂ selectivity. Forming HF also reduces the available F⁻, so polymerization is enhanced. CHF₃ is also used for achieving this.

UNIVERSITY OF WASHINGTON

© UWEE TC Chen

Winter 2014

SIDEWALL POLYMERIZATION - 2

- Fluorocarbon RIE usually creates a –CF₂– polymer on the sidewalls, similar to Teflon[®] PTFE.
- The chemical inertness of this polymer can be useful for subsequent process steps, but this also makes its removal difficult. Oxygen plasma ashing is usually needed for removal.
- For low to moderate trench aspect ratios (depth : width), this polymerization can produce nearly vertical RIE sidewalls.
- For deeper trenches, it becomes increasingly difficult to keep the sidewalls shielded from bombardment from glancing angle ions, and the polymer layer is eroded as fast as it is created.
- Single chemistry RIE reaches a limiting aspect ratio of around unity for near vertical sidewall profiles.
- A solution is to use a two-chemistry / two-phase approach.

- This is the basis for DRIE.

© UWEE TC Chen

Types of Etching	Methods	Geometry	Selectivity	Excitation Energy	Pressure	
Gas/vapor Etching	Chemical	Isotropic	Very high	none	High (760-1torr)	
Plasma Etching	Chemical	Isotropic	High	10's to 100's of Watts	Medium (>100 mtorr)	
Reactive ion Etching	Chemical & Physical	Directional	Fair	100's of Watts	Low (10-100 mtor <mark>r)</mark>	
Sputtering Etching	Physical	Directional	Low	100's to 1000's of Wate	Low (~10 mtorr)	

(1 torr = 1 mmHg)

© UWEE TC Chen

Winter 2014

DRIE- DEEP REACTIVE ION ETCH

- This is one of the few process tools that was developed specifically for MEMS applications.
- Special type of RIE
 - "Tricks" needed to increase the aspect ratio
 - Requires high density plasma (HDP) systems
- RIE works up to 4:1 aspect ratio
 - Sidewalls can etch causing non-straight features
- DRIE methods can create up to 30:1 aspect ratio!

© UWEE TC Chen

DEEP REACTIVE ION ETCHING (DRIE)

- Lärmer and Schilp (Bosch) Deutsch patent of 1994:
 - Alternate between etching and polymer deposition. (2 phases)
 - Etching phase removes the polymer on the bottom of the trench.
 - Polymerization phase protects the sidewalls from etching.
- Etching phase:
 - SF₆ / Ar used with -5 to -30 V of substrate bias to produce nearly vertical incident ions. This creates an anisotropic SF₆ etch without needing O₂.
- Polymerization phase:
 - CHF_3 or C_4H_8 / SF_6 used. The sidewall polymer is $-CF_2$ -, teflonlike.
- Can obtain nearly vertical sidewalls with ~30:1 aspect ratios.
- Sidewalls have a characteristic scalloping that corresponds to each WASHINGTON © UWEETCCHER Winter 2014

DRIE EXAMPLES

• Commercial equipment is produced by STS, Plasma-Therm, Oxford Instruments, and Trion.

STS '99

Klaassen et al. '95 (Stanford)

© UWEE TC Chen

Winter 2014

TUBE FURNACES

- The industry standard for achieving processing temperatures in the range of ~800 to 1200°C with tight control of temperature and gas flows.
- Horizontal style
 - Traditional, most common for laboratory R&D work.
 - Multi-tube stacks (4 ea.) were very common for production work.
- Vertical style
 - Newer technology, most common for IC production.
 - Better suited for larger wafers sizes (> 200 mm).
- Both use electrically heated furnace blocks that surround a quartz (fused silica) tube.

© UWEE TC Chen

3-ZONE HORIZONTAL FURNACE TUBE -ATMOSPHERIC

4-TUBE SEMI-PRODUCTION FURNACE STACK

• Laminar bench loading area with automatic boat loaders:

© UWEE TC Chen